Skip to main content

Ultimate precision for sensor technology using qubits and machine learning

Date:
July 11, 2018
Source:
Aalto University
Summary:
Extracting information quickly from quantum states is necessary for future quantum processors and super-sensitive detectors in existing technologies. Researchers demonstrate a new method that combines quantum phenomena and machine learning to realise a magnetometer with precision beyond the standard quantum limit.
There are limits to how accurately you can measure things. Think of an X-ray image: it is likely quite blurry and something only an expert physician can interpret properly. The contrast between different tissues is rather poor but could be improved by longer exposure times, higher intensity, or by taking several images and overlapping them. But there are considerable limitations: humans can safely be exposed to only so much radiation, and imaging takes time and resources.
A well-established rule of thumb is the so-called standard quantum limit: the precision of the measurement scales inversely with the square root of available resources. In other words, the more resources -- time, radiation power, number of images, etc. -- you throw in, the more accurate your measurement will be. This will, however, only get you so far: extreme precision also means using excessive resources.
A team of researchers from Aalto University, ETH Zurich, and MIPT and Landau Institute in Moscow have pushed the envelope and came up with a way to measure magnetic fields using a quantum system -- with accuracy beyond the standard quantum limit.
The detection of magnetic fields is important in a variety of fields, from geological prospecting to imaging brain activity. The researchers believe that their work is a first step towards of using quantum-enhanced methods for sensor technology.
'We wanted to design a highly efficient but minimally invasive measurement technique. Imagine, for example, extremely sensitive samples: we have to either use as low intensities as possible to observe the samples or push the measurement time to a minimum,' explains Sorin Paraoanu, leader of the Kvantti research group at Aalto University.
Their paper, published in the journal npj Quantum Informationshows how to improve the accuracy of magnetic field measurements by exploiting the coherence of a superconducting artificial atom, a qubit. It is a tiny device made of overlapping strips of aluminium evaporated on a silicon chip -- a technology similar to the one used to fabricate the processors of mobile phones and computers.
When the device is cooled to a very low temperature, magic happens: the electrical current flows in it without any resistance and starts to display quantum mechanical properties similar to those of real atoms. When irradiated with a microwave pulse -- not unlike the ones in household microwave ovens -- the state of the artificial atom changes. It turns out that this change depends on the external magnetic field applied: measure the atom and you will figure out the magnetic field.
But to surpass the standard quantum limit, yet another trick had to be performed using a technique similar to a widely-applied branch of machine learning, pattern recognition.
'We use an adaptive technique: first, we perform a measurement, and then, depending on the result, we let our pattern recognition algorithm decide how to change a control parameter in the next step in order to achieve the fastest estimation of the magnetic field,' explains Andrey Lebedev, corresponding author from ETH Zurich, now at MIPT in Moscow.
'This is a nice example of quantum technology at work: by combining a quantum phenomenon with a measurement technique based on supervised machine learning, we can enhance the sensitivity of magnetic field detectors to a realm that clearly breaks the standard quantum limit,' Lebedev says.
Aalto researchers acknowledge the project QMETRO of the Centre for Quantum Engineering and the Academy of Finland Centre of Excellence in Quantum Technologies. The research made use of the national OtaNano research infrastructure.
Story Source:
Materials provided by Aalto UniversityNote: Content may be edited for style and length.

Comments

Popular posts from this blog

IMPORTANCE AND ADVANTAGES OF SIWES

STUDENTS INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES) The Industrial Training/Students Industrial Work Experience Scheme, IT/SIWES is a new Directorate under the Vice-Chancellor’s Office.  It was established on 20th April, 2012 The Students Industrial Work Experience Scheme (SIWES) is a skills training programme designed to expose and prepare students of universities and other tertiary institutions for the Industrial Work situation they are likely to meet after graduation.  It is also a planned and structured programme based on stated and specific career objectives which are geared towards developing the occupational competencies of participants (Mafe, 2009).  Consequently, the SIWES programme is a compulsory graduation requirement for all Nigerian university students offering certain courses. The Students Industrial Work Experience Scheme (SIWES), is the accepted training programme, which

How to Reset HP Elitebook 8460p BIOS/Administrator Password

Have you  forgotten HP Elitebook 8460p password , bios or administrator account password? How to do if both of them lost? It seems hard though there may be lots of ways that can solve it. But if we talk about it separately, such as in two parts,  HP elitebook password reset  would be not so difficult. Part 1: Reset HP Elitebook 8460p BIOS password Part 2: HP Elitebook 8460p Administrator password recovery Part 1: How to Reset Forgotten HP Elitebook BIOS Password? Generally, there are two ways to  reset forgotten BIOS password .  One  is forcing BIOS/CMOS to reset itself to its stored defaults by removing all power from it.  The other  is to use a program to either locate or identify the password, and reveal it to you or erasing the password clearly. And the most easiest and convenient method for erasing dynamic BIOS/CMOS settings is to remove battery directly from the motherboard. However, it applies to most motherboards besides HP Elitebook BIOS. Fortunately, HP Eliteb

Ethical Hacking - TCP/IP Hijacking

TCP/IP Hijacking is when an authorized user gains access to a genuine network connection of another user. It is done in order to bypass the password authentication which is normally the start of a session. In theory, a TCP/IP connection is established as shown below − To hijack this connection, there are two possibilities − Find the seq which is a number that increases by 1, but there is no chance to predict it. The second possibility is to use the Man-in-the-Middle attack which, in simple words, is a type of network sniffing . For sniffing, we use tools like Wireshark or Ethercap . Example An attacker monitors the data transmission over a network and discovers the IP’s of two devices that participate in a connection. When the hacker discovers the IP of one of the users, he can put down the connection of the other user by DoS attack and then resume communication by spoofing the IP of the disconnected user. Shijack In practice, one of the best TCP/IP hijack too